SMART METERING AND INDIVIDUAL HEAT COST ALLOCATION FOR BETTER ENERGY EFFICIENCY

Roberto Colombo, Director of Brunata d.o.o. and Regional manager, Brunata Denmark

BRUNATA, A SHORT HISTORY

- **1917**: The first prototype of heat cost allocator is installed in a building in Copenhagen, Denmark
- **1930**: The Danish engineer Constantin Brun improves the heat cost allocators (evaporation)
- **1950**: Brun merges with the Swiss company Ata: Brunata

- 1980s: The first electronic allocators are launched
- **1990s**: Brunata launches WebMon: remote reading of meters and continuous monitoring via internet

THE LEGISLATIVE FRAMEWORK

THE MAIN GOAL IS: REDUCING GAS IMPORT

(16) Bearing in mind that the Council conclusions of 10 June 2011 on the Energy Efficiency Plan 2011 stressed that buildings represent 40 % of the Union's final energy consumption, and in order to capture the growth and

CASE STUDY 1, ZAGREB

- Building made in the 1960s, with 45 apartments
- Connected to District heating
- Apartments heating made by 220 cast iron radiators

Total cost for heating before the works: HRK 121.494 (avg 2.700/flat)

Works made in the building:

- Flushing pipes with chemicals
- New electronic pumps
- Heat cost allocators
- Thermostatic valves with pre-setting
- Balancing valves on each vertical

	Seasons before works (HRK/Y)	Seasons after works on heating system (HRK/Y)
Thermal energy	90.202,00 HRK	53.550,00 HRK
Power lease	31.292,00 HRK	31.292,00 HRK
Total	121.494,00 HRK	84.842,00 HRK

Cost -30,2% (HRK)

CASE STUDY 2, ZAGREB

- 5 buildings
- Each building has 3 entrances, 5 floors and 4 apartments per floor -Total of 300 flats
- Buildings have been built in 1967

The central thermal station is in the middle building Each building has a thermal substation Part of the energy is used to warm up the cold water Each entrance has a separate water meter

Only three buildings decided to go for the individual Heat

Cost Allocation. Works made in these 3 buildings:

- Flushing pipes with chemicals
- New electronic pumps
- Heat cost allocators
- Thermostatic valves

RESULTS:

First winter -26,2%

Average Energy consumed, compared to the buildings without razdjelnici

zgrada	Srednjaci 15-19	Kikićeva 4-8	Kikićeva 10-14	Kikićeva 16-20	Kikićeva 22-26	UKUPNO	TOPLA VODA	SVEUKUPNO
šifra TS razdjelnici	SR029	SR025 nema	SR026 ima	SR027 nema	SR028 ima	sve zgrade prostor	SR047 PTV	ENERGIJA
	ima							
potrošnja	kWh	kWh	kWh	kWh	kWh	kWh	kWh	kWh
X/15	25,820	34,000	28,873	38,000	28,000	154,693	78,307	233,000
XI/15	44,595	57,000	42,599	60,000	44,000	248,194	80,806	329,000
XII/15	60,178	76,000	55,127	72,000	59,000	322,305	72,695	395,000
/16	116,482	123,000	88,502	115,000	94,000	536,984	88,016	625,000
1/16	26,005	61,000	42,926	63,000	48,000	240,931	97,069	338,000
11/16	39,317	57,000	39,636	61,000	44,000	240,953	72,047	313,000
V/16	15,593	24,000	18,361	37,000	21,000	115,954	80,046	196,000
V/16	13,136	22,000	15,842	30,000	19,000	99,978	66,022	166,000
UKUPNO	341,126	454,000	331,866	476,000	357,000	1959,992	635,008	2595,000

100 10 0015 00 05 0010

and and condicionis

SEZONA 2016 / 2017 od 01.10.2016. - 15.05.2017. **SVEUKUPNO** zgrada Srednjaci 15-19 Kikićeva 4-8 Kikićeva 10-14 Kikićeva 16-20 Kikićeva 22-26 UKUPNO TOPLA VODA SR025 SR028 šifra TS SR029 SR027 sve zgrade SR047 **ENERGIJA** SR026 razdjelnici PTV ima nema 👔 ima ima nema 🕜 prostor potrošnja kWh KYVO KWN ĸwn kWh kWh kWh KWN X/16 19,327 33,000 23,168 37,000 26,000 138,495 71,505 210,000 XI/16 36,330 61,000 41,351 61,000 45,000 244,681 71,319 316,000 XII/16 80,889 120,000 83,491 111,000 87,000 482,380 96,620 579,000 V17 97,119 100,985 129,000 119,000 106,000 552,104 96,896 649,000 11/17 53,206 75,000 53,929 74,000 61,000 317,135 79,865 397,000 111/17 27,174 28,151 45,000 41,000 34,000 175,325 73,675 249,000 IV/17 17,363 28,000 20,516 36,000 24,000 125,879 71,101 196,980 V/17 7,123 11.000 11,000 17,000 8.754 129,000 54,877 183,877 338,531 498,000 1 UKUPNO 362,591 500.000 391.754 2090,876 689,981 2780,857

Second winter -27%

Average Energy consumed, compared to the buildings without razdjelnici

THE ALLOCATOR MEASURES...

...BUT IT HAS NOTHING TO DO WITH THE HYDRAULICS WORKING BADLY

CLEANING BEFORE INSTALLING

If pipes have not been washed with chemicals, the mud and the debris will flow into the valves, blocking them soon.

BEFORE INSTALLATION

Set of rules / technical recommendations / best practice: Project and calculation before installation.

Mandatory operations:

- Washing pipes with chemicals
- Balancing the hydraulic system

WITHOUT BALANCING VALVES

THE INSTALLATION

THE SAVINGS WITH CONSUMPTION-BASED ALLOCATION OF COSTS

- IN ORDER TO SHOW THE ENERGY SAVINGS THAT ARE POSSIBLE THANKS TO THE INDIVIDUAL COST ALLOCATION, <u>24 INTERNATIONAL STUDIES</u> HAVE BEEN PERFORMED IN OVER 14 COUNTRIES:
- GERMANY, DENMARK, FINLAND, SWEDEN, NORWAY, AUSTRIA, UK, FRANCE, ITALY, POLAND, JAPAN, SWITZERLAND, RUSSIA, THE NETHERLANDS.
- THE RESULT WAS UNANIMOUS: ON AVERAGE, THERE ARE <u>SAVINGS OF 20%</u> OF THE ENERGY THANKS TO THE AWARENESS OF THE INDIVIDUAL CONSUMPTION (with peak of 40% in some of the studies).

Thank you - Hvala