Farming and conservation: two sides of the same coin?

The case of sturgeons

Paolo Bronzi Leonardo Congiu

Criterion	PRODUCTION	CONSERVATION
Aims	High yeld, fast and omogeneous growth, good CF, robustness to rearing conditions, early maturation,	"wild-like" animals, limited production, high biodiversity, natural behaviour (feeding, predator avoidance, learning, etc)

Aquaculture for production and Aquaculture for conservation have different prerequisites.

Vukovar, 29-31 March 2023 - 14th International Aquaculture Conference

Criterion	PRODUCTION	CONSERVATION
Aims	High yeld, fast and omogeneous growth, good CF, robustness to rearing conditions, early maturation,	"wild-like" animals, limited production, high biodiversity, natural behaviour (feeding, predator avoidance, learning, etc)
Origin of broodstock	Good basis for zootechnical selection	From population to support (river, spawning time)

Criterion	PRODUCTION	CONSERVATION
Aims	High yeld, fast and omogeneous growth, good CF, robustness to rearing conditions, early maturation,	"wild-like" animals, limited production, high biodiversity, natural behaviour (feeding, predator avoidance, learning, etc)
Origin of broodstock	Good basis for zootechnical selection	From population to support (river, spawning time)
Ownership of broodstock	Private to allow selection and management	Public, to ensure access

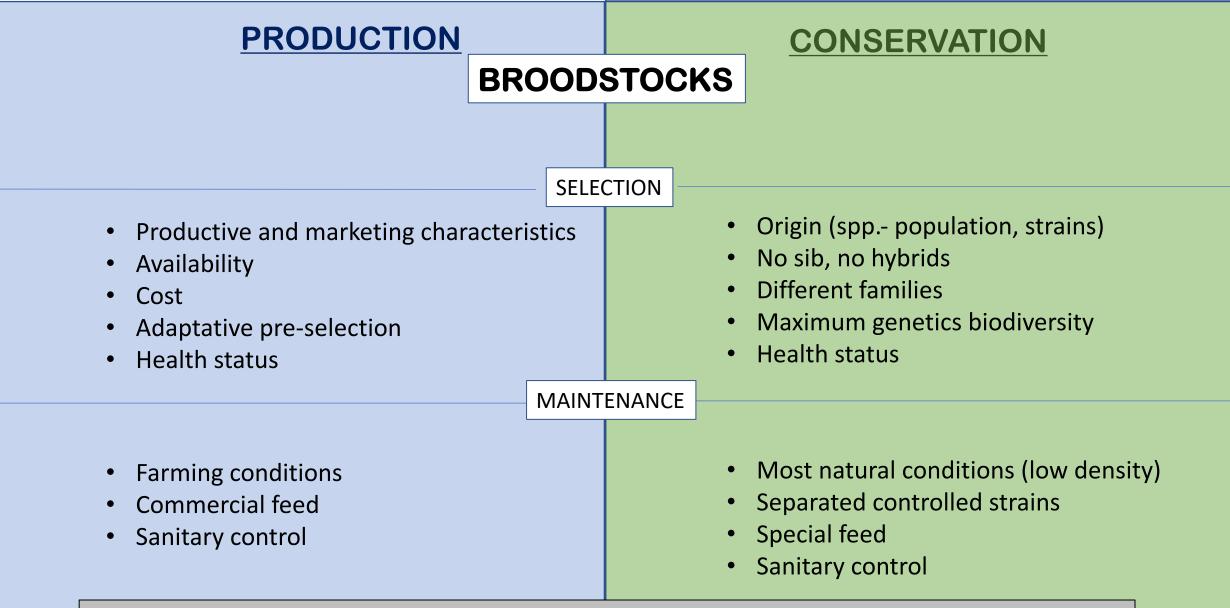
Criterion	PRODUCTION	CONSERVATION
Aims	High yeld, fast and omogeneous growth, good CF, robustness to rearing conditions, early maturation,	"wild-like" animals, limited production, high biodiversity, natural behaviour (feeding, predator avoidance, learning, etc)
Origin of broodstock	Good basis for zootechnical selection	From population to support (river, spawning time)
Ownership of broodstock	Private to allow selection and management	Public, to ensure access
Reproduction	To allow to reach selection targets	Breeding plan to maximize genetic heterogeneity

Criterion	PRODUCTION CONSERVATION						
Aims	High yeld, fast and omogeneous growth, good CF, robustness to rearing conditions, early maturation,						
Origin of broodstock	Good basis for zootechnical selection	technical selection From population to support (river, spawning time)					
Ownership of broodstock	Private to allow selection and management	t Public, to ensure access					
Reproduction	To allow to reach selection targets	gets Breeding plan to maximize genetic heterogeneity					
Rearing conditions	Intensive, minimal fluctuations to allow adaptation and homogenous growth and behaviour	Extensive, allowing for fluctuations and natural stimuli to enhance behavioural plasticity					

Criterion	PRODUCTION	CONSERVATION					
Aims	High yeld, fast and omogeneous growth, good CF, robustness to rearing conditions, early maturation,						
Origin of broodstock	Good basis for zootechnical selection	cal selection From population to support (river, spawning time)					
Ownership of broodstock	Private to allow selection and management	Public, to ensure access					
Reproduction	To allow to reach selection targets	Breeding plan to maximize genetic heterogeneity					
Rearing conditions	Intensive, minimal fluctuations to allow adaptation and homogenous growth and behaviour	Extensive, allowing for fluctuations and natural stimuli to enhance behavioural plasticity					
Density	High (profitability)	Low (avoid crowding)					

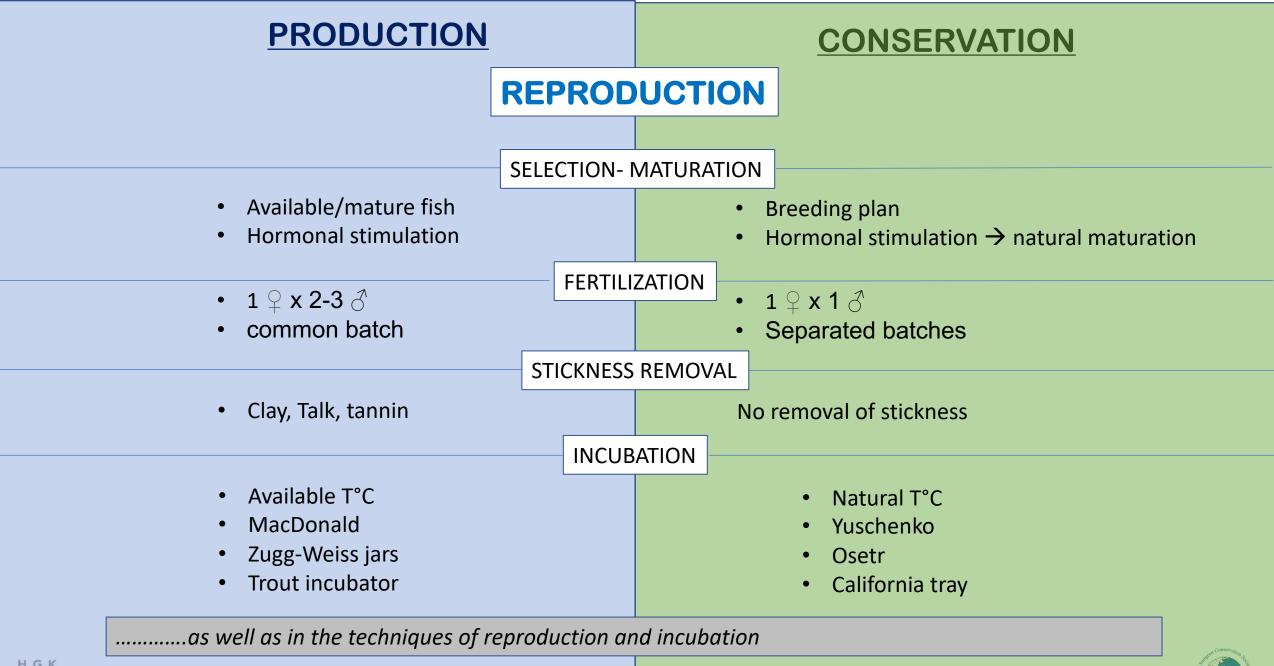
Criterion	PRODUCTION	CONSERVATION					
Aims	High yeld, fast and omogeneous growth, good CF, robustness to rearing conditions, early maturation,						
Origin of broodstock	Good basis for zootechnical selection	cal selectionFrom population to support (river, spawning time)					
Ownership of broodstock	Private to allow selection and management	ement Public, to ensure access					
Reproduction	To allow to reach selection targets	Breeding plan to maximize genetic heterogeneity					
Rearing conditions	Intensive, minimal fluctuations to allow adaptation and homogenous growth and behaviour	Extensive, allowing for fluctuations and natural stimuli to enhance behavioural plasticity					
Density	High (profitability)	Low (avoid crowding)					
Feed	Formulated dry diets for performance						

Criterion	PRODUCTION	CONSERVATION				
Aims	High yeld, fast and omogeneous growth, good CF, robustness to rearing conditions, early maturation,	"wild-like" animals, limited production, high biodiversity, natural behaviour (feeding, predator avoidance, learning, etc)				
Origin of broodstock	Good basis for zootechnical selection	From population to support (river, spawning time)				
Ownership of broodstock	Private to allow selection and management	Public, to ensure access				
Reproduction	To allow to reach selection targets	Breeding plan to maximize genetic heterogeneity				
Rearing conditions	Intensive, minimal fluctuations to allow adaptation and homogenous growth and behaviour	Extensive, allowing for fluctuations and natural stimuli to enhance behavioural plasticity				
Density	High (profitability)	Low (avoid crowding)				
Feed	Formulated dry diets for performance	Natural, evt. including weaning if reared over longer time periods				
Disease prevention	Transfer for optimization permissable	No transfer between populations				



Conservation

The species is still e	existing				is no more existing
 Natural reproduction Recovery time too lo Protection/restocking 		Cost-benefit analysis		 resto	 ocking
we have to take Into consideration		EX-SITU	<u>measures</u>	to produce suite restocking the p consider is the b	S
	ILD FISH —		OSTOCK -	FARM	IED FISH
CONS • Impact on the wild population • Pathology • Not easy catch		RO etic diversity	• Limited g • Adaptati	CONS genetic diversity on to captivity allochthonous ??)	PRO • Availability • Infrastructures • Competences • Management
		Sanitary contr	• Relatedn • Patholog		



The various steps that take place in the practice of controlled reproduction differ between aquaculture for production and that for conservation, starting from the selection and maintenance of broodstock

PRODUCTION

CONSERVATION

LARVAL REARING

- Higher density
- Artemia/commercial dry food
- Standard tanks
- Available temperatures
- Ground water

Tanks

Higher density

Commercial dry food

Available temperatures

- Low density
- Different natural live food
- Training tanks:
 - Natural photoperiod
 - Natural fluctuating temperatures
 - Hydrodynamics- water velocity
 - Some predators
 - "home" water for homing imprinting

FINGERLING REARING

- Fertilized ponds/big tanks
 - Semi-wild conditions (T°C, lux, environment, etc.)
 - Low density
 - Natural food (zooplankton)
 - Addition of necto-benthic organisms

.....as well as in the techniques of larval and fingerling rearing

GENETICS

conservation

For species/population conservation

production

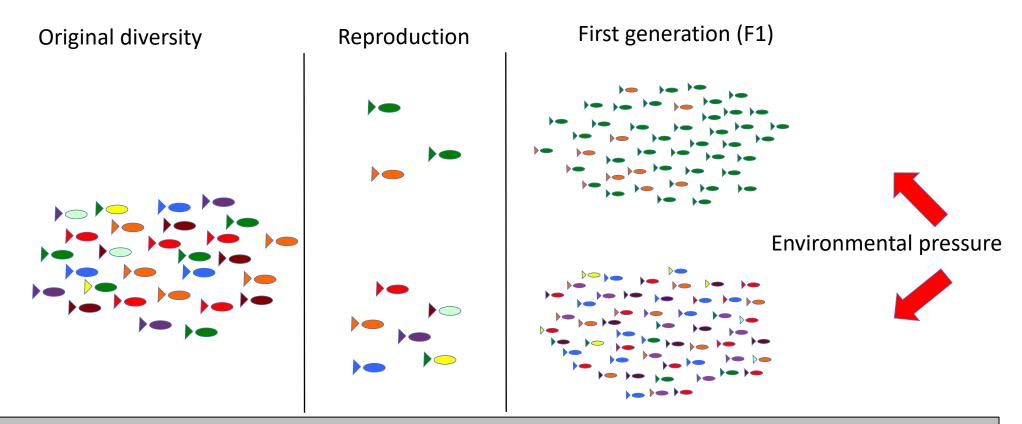
As support to production (artificial selection)

the goal is to maximize the amount of **genetic diversity** to be transmitted to the following generations

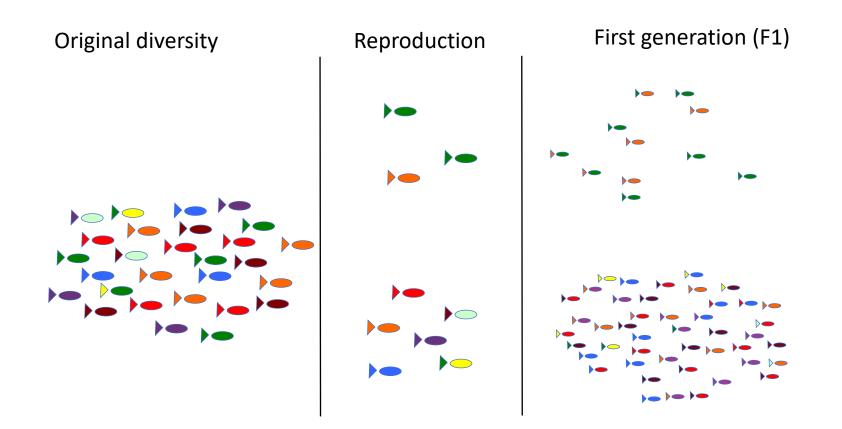
the goal is to **select heritable traits** of interest, creating pure lines in which alternative genetic variants (alleles) are removed.

- Management of residual genetic diversity ٠
- Selection of source populations for restocking
- Post releasing monitoring ٠

In both aquacultures, genetics is of the utmost importance, even if with different objectives: the maintenance of the maximum biodiversity for the conservation and the selection of the suitable heritable characteristics for the production



The loss of *variability* (*adaptability*) at population (stock) level = <u>loss of adaptive potential</u>



The reproduction made with few animals leads to a genetically monotonous progeny, while the use of numerous reproducers leads to a progeny with a high biodiversity. The latter is useful in the case of an environmental pressure that can decimate the monotonous population, while the one with greater genetic diversity has more chances to survive more numerous

Very relevant is the loss of *variability* (*adaptability*) at population (stock) level = <u>loss of adaptive potential</u>

Important to minimize the impact of catastrophes (e.g. pollution, extreme weather and diseases)

Vukovar, 29-31 March 2023 - 14th International Aquaculture Conference

Possible causes of erosion of genetic diversity

Founder effect: the loss of genetic variation that occurs when a new population is established by a **small number** of individuals

Preferential mating: not all breeders are represented in the following generation/some individuals are **over-represented**

Adaptation to captive condition: increase in frequency of traits giving good fitness in captivity

countermeasures

1) Minimize the number of (new) generations in captivity (++ older broodstock)

2) Equalize family sizes (spontaneous reproduction- random choice)

3) Fragmenting stocks and rearing them in different conditions (places)

Family based breeding plan

Priority		pelv.Nac18	Nac8.matto	Nac7.Nac6	Nac8.Nac31	Nac33.Nac11	O2.matto	Nac26.Nac29	Nac19.Nac17	Nac28.Nac17	Nac16.Nac23	Nac19.Nac31	Nac16.Nac30	Nac33.Nac9	Nac8.Nac17	Nac12.Nac27	Nac3.740	
9	pelv.Nac18	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
22	Nac8.matto	0,34831	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
15	Nac7.Nac6	0,41622	0,4386	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
28	Nac8.Nac31	0,40331	0,24551	0,42529	0	0	0	0	0	0	0	0	0	0	0	0	0	
10	Nac33.Nac11	0,35165	0,35714	0,32571	0,35673	0	0	0	0	0	0	0	0	0	0	0	0	
11	O2.matto	0,17708	0,17978	0,37297	0,34807	0,34066	0	0	0	0	0	0	0	0	0	0	0	
23	Nac26.Nac29	0,46961	0,47305	0,44828		0,39181	0,43646	0	0	0	0	0	0	0	0	0	0	
32	Nac19.Nac17	0,35789	0,30682	0,35519	0,35196	0,32222	0,32632	0,3743	0	0	0	0	0	0	0	0	0	
31	Nac28.Nac17	0,37968	0,4104	0,26667	0,39773	0,32203	0,37968	0,35227	0,28649	0	0	0	0	0	0	0	0	
16	Nac16.Nac23	0,42105	0,36364	0,39891	0,35196		0,33684	0,32961	0,3617	0,35135	0	0	0	0	0	0	0	
29	Nac19.Nac31	0,34737	0,375	0,38798	0,2514	0,38889	0,35789	0,43017	0,19149	0,41622	0,37234	0	0	0	0	0	0	
8	Nac16.Nac30	0,41935	0,39535	0,41899	0,34857	0,40909	0,3871	,	0,38043	0,35912	0,19565	0,38043	0	0	0	0	0	
17	Nac33.Nac9	0,41436	0,42515	0,33333	0,36471	0,18129	0,39227	0,32941	0,32961	0,32955	0,35196	0,32961	0,37143	0	0	0	0	
30	Nac8.Nac17	0,36667	0,20482	0,37572	0,21893	0,28235	0,3	0,42012	0,19101	0,24571	0,34831	0,35955	0,36782	0,32544	0	0	0	_
7	Nac12.Nac27	0,31148	0,34911	0,38636	0,33721	0,38728	0,3224	0,37209	0,33702	0,35955	0,33702	0,29282	0,35593	0,32558	0,39181	0	0	
18	Nac3.740	0,38624	0,37143	0,37363	0,34831	0,27374	0,39683	0,37079	0,29412	0,3587	0,39037	0,34759	0,39891		0,35593	0,34444	0	
25	Nac8.740	0,3587	0,2	0,41243	0,24855	0,29885	0,30435	0,47977	0,30769	0,38547	0,37363	0,37363	0,39326	0,34104	0,22093	0,36	0,20442	
24	Nac15.Nac13	0,35829	0,3526	0,35556	0,39773	0,32203	0,31551	0,39773	0,34054	0,35165	0,37297	0,39459		0,31818	0,34857	0,32584	0,3587	0,
26	Nac28.Nac23	0,38542	0,41573		0,42541	0,3956	0,35417	0,32597	0,34737	0,14439	0,24211	0,38947	0,3871	0,33702	0,33333	0,36612	0,40741	0
13	Nac3.matto	0,33679	0,19553	0,34409	0,30769	0,28962	0,20207	0,35165	0,3089	0,3617	0,29843	0,36126	0,34759	0,34066	0,30387	0,32609	0,21053	
20	Nac33.740	0,3587	0,31765	0,34463	0,3526	0,18391	0,34783	0,39884	0,2967	0,34078	0,37363	0,36264		0,20231	0,31395	0,36	0,16022	0,
27	Nac12.Nac17	0,37705	0,37278	0,36364	0,37209	0,31792	0,37705	0,34884	0,21547	0,22472	0,33702	0,37017	0,34463	0,34884	0,23977	0,24138	0,3	0,
12	Nac3.Nac6	0,42391	0,43529	0,22034	0,39884	0,29885	0,40217	0,36416	0,35165	0,27374	0,3956	0,37363		0,2948	0,37209	0,34857	0,22652	0,
19	Nac16.740	0,44385	0,3526	0,46667	0,36364	0,36723		0,48864	0,35135	0,40659	0,25405	0,36216	0,23757	0,35227	0,38286	0,35955	0,23913	0,
21	Nac16.Nac29	0,41053	0,34091	0,40984	0,34078	0,35556	0,32632	0,22905	0,34043	0,32973	0,1383	0,34043	0,19565	0,30726	0,32584	0,29282	0,36898	0,
14	Nac24.Nac29	0,37634	0,38372	0,35196	0,41714	0,35227	0,33333	0,23429	0,33696	0,30387	0,30435	0,36957	0,37778	0,30286	0,35632	0,32203	0,34426	0

Maximize the diversity transmitted minimizing the number of crosses

Genetics focusing on aquaculture interests

- The long life cycle of sturgeons makes **very difficult the selection** of pure lines with classical methods. *For other species it is different.*
- Genetics could accelerate this process if the genes responsible of the trait of interest are known. In this case a breeding plan could be established by selecting the breeders through genotyping. (<u>GENETICALLY ASSISTED BREEDING</u>)
- The recent revolutionary innovations given by the **next generation sequencing** technologies allow the simultaneous characterization of tens of thousands loci.
- The possibility to efficiently explore the genomes looking for associations between phenotype and multi-locus genotypes opens new perspectives for assisted breeding (also on the long living sturgeons).

Commercial aquaculture

The preservation of **genetic diversity** must represent a **priority** also from the **production point of view:**

In fact, loosing diversity means:

- loosing possible new phenotypes of commercial interest
- decreasing the potential of surviving in case of dramatic events such as pollutions, deseases, climate changes etc.
- accelerating adaptation to the present captive conditions, decreasing the potential to survive or the fertility in different plants/conditions after translocation

Production and conservation: a joint strategy

Involve commercial farms for:

- broodstock maintenance
- rearing of stocking material
- actively participating in releases
- participating in reproductions with maximized genetic output
- obtaining offspring also for production

Benefits

- Increased exchange of experiences on rearing practices
- **Cost sharing** for rearing and broodstock maintenance (economic compensation to farmers)
- Public reckognition for involvement in conservation "green label"

Adverse impact

 fish of exotic origin or hybrids from production farms utilized for releases, which produces massive challenges for conservation programs in some regions.

It seems that a very good project for the conservation of sturgeons, and not only for these species, is in your intentions on the Danube in the area of Vukovar, a this would be a very good project for sturgeons and for the conservation of the biodiversity in general.

Vukovar, 29-31 March 2023 - 14th International Aquaculture Conference P. Bronzi - Farming and conservation: two sides of the same coin?

Pond surface: 1280 ha

You also had a good example of breeding a species of sturgeon, the beluga (Huso huso) in the Poljiana facility with some growth success.

Vukovar, 29-31 March 2023 - 14th International Aquaculture Conference

P. Bronzi - Farming and conservation: two sides of the same coin?

Area RAS: 1,500 m2 Small pools: circular HDPE, 8 pcs of 2.7m3 Large pools: circular HDPE 16 pcs, 27.3 m3 Projected fc recirculation: 99.5% Water adding: from underground wells

HOME ABOUT NEWS STURGEONS CONFERENCES PUBLICATIONS

World Sturgeon Conservation Society

NEXT BOARD MEETING and General Assembly April 16th, 2023. NEXT ISS 9 WAS CANCELED DUE TO PANDEMIC.

ABOUT WSCS

The Society acts as an international forum of scientific discussion.

Do you wa	ant to sta	ay update	d?
Name			
Surname			
Email Address			

The WSCS is always available to support you in all initiatives for the protection and recovery of sturgeons, and that if you want to become a member you are welcome

https://www.wscs.info

Vukovar, 29-31 March 2023 - 14th International Aquaculture Conference

Hvala na pažnji

Thank you for your attention

established 2003

Vukovar, 29-31 March 2023 - 14th International Aquaculture Conference

